Training Zones

symbol	training zones	DESCRIPTION ENERGY SOURCES	LOADING DURATION (MIN)		RPE	V IN \% OF ACT. PB	Lactate (MMOL/L)	heart rate	vozmax	PAUSE	recovery	${ }_{\text {co }}^{\text {SD }}$	$\begin{gathered} \text { MD } \\ 200-400 \end{gathered}$	${ }_{800-1500+}^{\mathrm{LD}}$	метнооs	PARTICULARTIES
REG	Regeneration/ Compensation	- For regeneration, training load processing and preparation for training loads - Energy supply from carbohydrates, fats, lactate	-		$\begin{gathered} \text { "very light" } \\ \text { Borg }<9 \end{gathered}$	<75\%	$<1,5$	Before puberty: after: 100-120	60-70\%	-	-	Up to 3,00 easy	Up to 3,000 easy	Up to 3,000 easy	Continuous method	- Swimdown after intensive training and after competition up to lactate $<2.5 \mathrm{mmol} / \mathrm{l}$
AEC1	Aerobic Capacity (aerobic endurance ext./int.)	- Extensive aerobic capacity - Energy supply from carbohydrates (muscle, blood, liver), fats, lactate	T1	20-40'	$\underset{\text { Might" }}{\text { Borg }_{12} 12}$	75-80\%	1,5-2,5	$\begin{aligned} & \text { Before } \\ & \text { puerty: } \\ & \text { pub-150 } \\ & \text { 2tateri } \\ & 120-145 \end{aligned}$	70-75\%	$1,500 s \rightarrow 40-60^{\prime \prime}$ $800 s \rightarrow 40-60^{\prime \prime}$ $400 s \rightarrow 30-60^{\prime \prime}$ $100 / 200 \rightarrow 20-30^{\prime \prime}$ $50 s \rightarrow 25-30^{\prime \prime}$	6-12 hours	\$3,000	\$3,000	\$5,000	$\begin{gathered} \text { Continuous } \\ \text { method, } \\ \text { fartlek training } \end{gathered}$	- Ability to supply energy from fats and lactate - mproves buffer capacity Optimizes the refiling speed of the glycogen storage
			T2	30-45'		FR frequency:										
			T3	40-60'		100-31						50-1,509	50-1,500	50-1,500	Extensiveinterval	
			E1+	45-60+'		400-27										
			${ }_{1}$	20-40'		80-85\%				$8005 \rightarrow 1-2{ }^{\text {P }}$						
		- Intensive aerobic capacity	${ }^{\text {T2 }}$	30-45'		FR frequency:		Before puberty:		$4005 \rightarrow 30-60^{\prime \prime}$		50-800s	50-800s	50-800s	Extensive interval	- Improves heart stroke volume, blood volume, pumenay
${ }^{\text {AEC2 }}$		- Energy supply esp from carbohydrates	${ }^{\text {T3}}$	40-60'	Borg 13-14	100-35	2,5-3,5	150-70.	75-80\%	100/200 $\rightarrow 20-30^{\prime \prime}$	${ }^{12-24}$ hours					capacity, capillarization
		(muscle, blood, liver)	T4	45-60'		200-33 400-31				$50 s \rightarrow 15-30^{\prime \prime}$		\$3,000	\$3,000	S5,000	Fartlek training, continuous	mitochondrial concentration
			T2	-		100\%										
		- Not mandatory necessary for	T3	4		MD-LD		Before pubert		5-30"			S1,500	③,000		- Improves maximum oxygen
AEP	Aerobic Powe	- Essential for istances $>200 \mathrm{~m}=$	T4	4-12'	"very hard" Borg 18-20	"Race Pace"	5-8	190-210.	95-100\%	(depending on interval distance)/	(max. 1-2 \times)	-	$\begin{aligned} & \mathrm{a} 2-3 \text {-3 } \\ & \text { series with } \end{aligned}$	$\begin{aligned} & \text { à-3-3 } \\ & \text { sefies with } \end{aligned}$	Intensive inter	- Imporovestan capillarization, buffering
		- Energy supply esp. from carbohydrates	E1	4-16'		FR frequency:		${ }_{10-190}$		3-4' SP (activ)						Capacty no increases y yogiobin
			E2	8-24		45-50										
			${ }^{\text {T1 }}$	2^{\prime}												
		- Anaerobic capacity	T2	4		100-105\%				20-60"	24-120 ho	$\$ 800$ a a 2-3				
	speed endurance)	(ATP/CP/glycogen) and carbohydrates (blood)	T4	${ }^{8}$	Borg 15-17	FR frequency:	8-10	after: 180-200				$\begin{aligned} & \text { series witr } \\ & 25-50 \text { s } \end{aligned}$ (max. 75)	series with $25-50$ s	$\underbrace{\substack{\text { S-50s }}}_{\text {Series with }}$		energy from anaerobic-lactacid systems
			E1+	${ }^{8+}$		50-55										
			T1	-		100\%				"Broken Swim"						
No	${ }_{\text {and }}^{\text {Anaerobic Power }}$ (lactate tolerance/	- Anaerobic power - Lactate tolerance for 50-400 m swimmers = "Race Pace"	T2	2-4'		SD-MD	$\begin{aligned} & \text { "Broken Swim" } \\ & 8-10 \end{aligned}$	Before puberty:		$\begin{gathered} \text { (dep.on interval } \\ \text { (istance)/ } \end{gathered}$	72-96 hours				"Broken Swim"	- Ability to endur high lactate levels
	competition-specific	- "Broken Swim", i.a, for forecast	${ }^{1}$	4-6	Borg 9 9-20	naeace		atter:		3-20 SP(ative)	$\underset{\text { week })}{ }$					against tatigue
		- Energy supply from carbohydrates (muscle, blood)	T4	4-16'		FR frequency:	Max. 1 (16)			$40^{\prime \prime}-10^{\prime}$		25-100s	25-100s		Repetition	- Improves buffer capacity
			El_{1+}	6-16'		50-55						25-100s	(max.200)		method	
			T1	${ }^{2}$												
		- Sprint speed	T2	3-4'												
s	Speed (Sprint)	- . mobilization ${ }^{\text {- }}$ -	${ }^{\text {T3 }}$	4-6	Might"	105-110\%	Up to 5 possible	puberly:	-	1.5-5. (active)	12-72 hours	≤ 300 with $10-40 \mathrm{~s}$	$\begin{gathered} \leq 300 \text { with } \\ 10-355 \end{gathered}$	≤ 300 with $10-25 \mathrm{~s}$	Repetition method	- Maximum fast movement programs with optimal technique
		- Energy supply from muscle stores (ATP/CP/glycogen)	${ }^{\text {T4 }}$	4-8'												in the aneerobi--lactacid area
			E1+	4-8+'												

